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VIBRATIONS AND STABILITY OF SHELLS DUE TO
LOADS AND TEMPERATURE*

A, P. SINITSYN

Institute of Earth Physics, USSR Academy of Sciences

Abstract-The vibrations and stability ofa thin cylindrical circular shell and a three-layered plate are studied. The
structure is considered as a system with many degrees of freedom. This model permits investigations of the
dynamic properties of the structure due to loads and temperature. An approximate solution of the wave problem
is obtained.

INTRODUCTION

THE general theory of shells is highly developed in the USSR by the scientific works of
Vlassov [1], Goldenveizer [2], Novozhilov [3] and others. As a result, we can now effect the
complicated design of many types of shells subjected to loads and temperature. But some
dynamic and stability problems are not yet solved, for example the problem of dynamic
temperature action. An approximate solution of these problems is worked out by taking
into account the analogy existing between the differential equations of motion of a shell
and those of a beam or plate on an elastic foundation. This mechanical model was studied
by N. J. Hoff [4] and also by C. R. Steele [7] who studied the general equations of shell
theory obtained by Novozhilov and had pointed out that the elastic foundation analogy is
usefuL

STATEMENT OF PROBLEM

Hoff's model may be made more complicated by placing more masses and strings, The
system now should have many degrees of freedom and in the limit case should be a beam on
an elastic foundation. The solution of this dynamic model acted on by loads and tempera­
ture is more complicated. For this purpose we shall consider the three-layered system,
which consists of two thin plates connected by elastic strings. The differential equations of
motion for each of these plates are:

4 iJ2 W1
D1V W1-N1+PJi2 = 0;

The thermal field is applied to one plate only. The force N I is the reaction in the string,
and I1N I is the inertial force acting on the string. If an external load is applied too, it must
be added to the right-hand side of equation (l).

The plate is on an elastic foundation if equal fields are applied together to both plates.
Now the two equations (1) convert into a single equation

DV4 W ( hopo)iJ2W 2D3 __ ~ _1_ 2+ p+ 6 iJ 2 + h W - V WT ·
t ° 21-v
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To solve this equation we substitute:

lV; = J¥.i + l-tdi (3)

(4)

where J¥.i is the deflection due to the temperature acting statically and l-tdi is the dynamic
deflection due to inertial forces. Equation (2) for the determination of l-tdi now transforms
into the following equation:

4 (poho).. 2D3 (poho) ..DV JVd,+ 11+-- JVd,+-JVd, = - II+~-- JV,• 6' I ho I t 6 51 •

The solution of equation (4) is:

HI II(K)' mrx . mny
Yr.' = ,sm sm --,

Sl nm. a b (5)

111 _ '\" '\" r (I)] . nnx . mny
'Yd' - L.L. q ·sID-sm

I •. I a b (6)

(7)

2(1- v)n2D{nm[(n:r +(n:rr+2~3} .
The determination of qnm(t)i as a function of time is effected by solving the classical

equation of second degree. For a suddenly applied temperature or heat flux this was done
by H. Parkus

(8)

This function will be more complicated for an impulse of temperature.
The frequencies (wnm)i were calculated by formula:

(9)2 {[(nn)2 (mn)2J2 2D3} D
(Wnm)i = -; + b +hoD (;;--t-tPoh)'

The solution obtained may be applied to the dynamic problem ofdesigning the circular
cylindrical shell acted on by loads and temperature.

The equations of motion of cylindrical shell given by S. P. Timoshenko [9}and used by
I. P. Jones and P. G. Bhuta [10] are the following:

(10)

aEh 3

12(1-
(11)
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For a long cylindrical shell subjected to a suddenly applied temperature uniformly
distributed along its length the displacements in the direction of the shell axis are equal to
zero and the two coupled equations (10) and (11) will be separated. Comparing equation (11)
with equation (2) we find that the solution obtained for equation (2) is also the solution of
equation (11).

STABILITY

The vibrations and the stability problems ofthe shell are closely connected. The solution
obtained permits an investigation of the stability of the shell and a determination of the
dynamic critical load when the temperature is applied. The approximate solution given by
Hoff shows that the critical load is highly dependent on the reaction force of the string
which is acting on the concentrated mass placed in the middle of the shell length. In our
problem the reactions of the elastic foundation are continuously distributed along the
length of the shell. The determination of these reactions may be effected by formulae (3, 5
and 6), but the calculations involved are very extensive. For example, to calculate the
displacement of one point of the shell the infinite series must be evaluated three times. This
was done by using the electronic computer Ural II and the full diagrams of reactions were
obtained (Fig. 1). The reactions are functions of time, and their values depend on the ratio
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FIG. 1. The diagram of reaction in springs.

of rigidity of the shell and that of the generalized elastic foundation. It is interesting to note
that the reaction has a maximum which corresponds to a certain value of diameter of the
shell and its thickness. If the diameter of the shell is constant and the thickness could be
changed, then the generalized reaction in the middle of the shell span is at first small (the
curve KID = 0·1 in Fig. 1) then it becomes maximum (the curve KID = 1·00 in Fir;. 1) and
lastly it is small again (the curve KID = 10 in Fig. 1). This conclusion is important to
determination of the optimum value of the shell thickness corresponding to a given diameter.
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WAVE EFFECT

(12)

The equation of motion (10), if it is separated from equation (11), describes the wave
propagation in a rod. This equation may be used for examination of the thermoelastic
wave propagation along the length of cylindrical shell, when the temperature rises at its
end. It is interesting to study the stress wave propagation, taking into account the coupling
which exists between the equation of motion and heat conduction

1 jj2u a2u aT- -_.... = ._--'Z.....
c2 Of 2 ax2 ox .

, T
1'--'2'ax (13)

These equations were studied by P. Chadwik [II), and solution of these equations is
presented in the form:

(14)

(15)

(16)

After the necessary transformations are carried out and the secondary terms are omitted,
the equation of wave propagation will be:

1 a2Ud a2Ud

~.;)2 "[J(1 =fi.~

c' is the modified wave velocity.

(C')2 = [1 +.. s(l-v)(I-2v) .Jc2
(1 +v)[1 - 2e(1 - v»)

I' is the coupling parameter, and v Poisson's ratio. For example, we shall take the following
temperature function:

T(x, t) = ate- bx

The solution of equation (15) is;

Ud = A[exp( -b(x c't»-exp( -b(x+c't))].

The maximum dynamic stresses are:

(J = - O'55.!XQ [1 - exp( - 2bc' t»)
max he' .

(17)

(18)

(19)

The diagram of stress wave propagation in a cylindrical shell is plotted in Fig. 2 and
some important conclusions may be reached. The modified stress wave arrives at a given
point of the shell earlier than the longitudinal wave, but has a smaller amplitude. The
stresses have a maximum in a cross section of the shell which is situated at a distance from
the end of the shell. If the stresses should be so great that plastic deformation occurs then
the plastic hinge will arise at some distance from the end of the shell. Hoff's model maybe
used to determine the stability of the shell. When the dynamic load and the temperature
are acting together the thermoelastic stress wave propagates ahead of the longitudinal wave
caused by a suddenly applied force and the stresses cannot be added. The experiments
carried out on models confirm these conclusions.
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FIG. 2. The diagram of wave propagation due to temperature. \···-the modified thermoelastic wave.
2-the thermoelastic wave. 3-the thermoplastic wave.

REFERENCES
[I] V. S. VLASSOV, The General Theory of Shells. Gosstroyisdat (1949).
[2] A. L. GOLDENVEIZER, The Theory ofElastic Thin Shells. State Publishing House of Technical and Theoretical

Literature. Moscow (1953).
[3] V. V. NOVOZHlLOV, The Theory of Thin Shells. Soudpromgis (1958).
[4J N. J. HOFF, A non-linear model study of the thermal buckling of thin elastic shell. J. appl. Mech. 32 (1965).
[5J A. P. SINITSYN, Thermoelastic Vibrations ofa Three-Layered Plate. Proceedings ofStructure Theory, Vol. 13.

Gosstroyisdat (1963).
[6J A. P. SINITSYN, Thermoelastic and thermoplastic vibrations of rods and plates. Proc. eleventh Congr. theor-

etical appl. Mech. USSR. Nauka (1966).
[7] C. R. STEELE, A solution for the thin elastic shell with surface loads. J. appl. Mech. 31 (1964).
[8] H. PARKUS, lnstationiire Wiirmespannungen. Springer (1959).
[9J S. P. TIMOSHENKO, Plates and Shells. Gostechisdat (1948).

[10] I. P. JONES and P. G. BHUTA, Response of cylindrical shells to moving loads. J. appl. Mech. 31 (1964).
[IIJ P. CHADWIK, On the propagation of thermoelastic disturbances in thin plates and rods. J. Mech. Phys.

Solids (1962).

(Received 9 September 1968)

A6cTpaKT-113Y'leHhI KOJle6aHHlI H YCTOH'IHBOCTh TOHKOH, I..\HJlHH,l:\pH'IeCKOH, KpyroBOH 060JlO'lKH H

TpeXCJlOHHOH nJlaCTHHKH. KOHCTPYKUHlI paccMaTpHBaeTclI KaK CHCTeMa C HeCKOJlhKHMH CTeneHlIMH

CBo6o,l:\hI. TaKall MO,l:\eJlh n03BOJllleT lICCJle,l:\OBaTh ,l:\HHaMH'leCKHe CBoHcTBa KOHCTpyKl.lHH npH ,l:\eHCTBHH

CHJI H TeMnepaTypbl. nOJlY'leflo npH6nHlKeHHoe pellJeHHe ,l:\JllI BOJIHOBOH 1a.L\a'lH.


